Cell wall components and pectin esterification levels as markers of proliferation and differentiation events during pollen development and pollen embryogenesis in Capsicum annuum L.
نویسندگان
چکیده
Plant cell walls and their polymers are regulated during plant development, but the specific roles of their molecular components are still unclear, as well as the functional meaning of wall changes in different cell types and processes. In this work the in situ analysis of the distribution of different cell wall components was performed during two developmental programmes, gametophytic pollen development, which is a differentiation process, and stress-induced pollen embryogenesis, which involves proliferation followed by differentiation processes. The changes in cell wall polymers were compared with a system of plant cell proliferation and differentiation, the root apical meristem. The analysis was also carried out during the first stages of zygotic embryogenesis. Specific antibodies recognizing the major cell wall polymers, xyloglucan (XG) and the rhamnogalacturonan II (RGII) pectin domain, and antibodies against high- and low-methyl-esterified pectins were used for both dot-blot and immunolocalization with light and electron microscopy. The results showed differences in the distribution pattern of these molecular complexes, as well as in the proportion of esterified and non-esterified pectins in the two pollen developmental pathways. Highly esterified pectins were characteristics of proliferation, whereas high levels of the non-esterified pectins, XG and RGII were abundant in walls of differentiating cells. Distribution patterns similar to those of pollen embryos were found in zygotic embryos. The wall changes reported are characteristic of proliferation and differentiation events as markers of these processes that take place during pollen development and embryogenesis.
منابع مشابه
The effect of resistance training and date pollen extract on bone tissue density and osteoblast cell proliferation in young male rats
Extended Abstract 1.Introduction One of the tissues that is affected by physical activity is bone. Bone is one of the tissues that needs to receive mechanical load to have normal function as a key factor in strengthening bone mass (2). Evidence shows that the mechanical load resulting from physical activity activates a set of proteins involved in the process of osteoblast activation and inhib...
متن کاملChanges in DNA methylation levels and nuclear distribution patterns after microspore reprogramming to embryogenesis in barley.
Under specific stress treatments, the microspore can be induced in vitro to deviate from its gametophytic development and to reprogram towards embryogenesis, becoming a totipotent cell and forming haploid embryos. These can further regenerate homozygous plants for production of new isogenic lines, an important biotechnological tool for crop breeding. DNA methylation constitutes a prominent epig...
متن کاملInterference of the Histone Deacetylase Inhibits Pollen Germination and Pollen Tube Growth in Picea wilsonii Mast
Histone deacetylase (HDAC) is a crucial component in the regulation of gene expression in various cellular processes in animal and plant cells. HDAC has been reported to play a role in embryogenesis. However, the effect of HDAC on androgamete development remains unclear, especially in gymnosperms. In this study, we used the HDAC inhibitors trichostatin A (TSA) and sodium butyrate (NaB) to exami...
متن کاملNuclear bodies domain changes with microspore reprogramming to embryogenesis.
We analysed the presence of nuclear bodies and particularly Cajal bodies during representative stages of gametophytic and haploid embryogenic development in isolated microspore and anther cultures of a model system (Brassica napus cv. Topas) and a recalcitrant species (Capsicum annuum L. var. Yolo Wonder B). The nuclear bodies domain is involved on several important roles on nuclear metabolism,...
متن کاملبررسی ساختار اندامهای رویشی و تکوین اندامهای زایشی بادیان رومی (.Pimpinella anisum L)
Pimpinella anisum L. belongs to Apiaceae family. The samples of vegetative and reproductive organs at different stages of development were gathered and investigated by cell-histology methods. The investigation of the anatomical structure of vegetative organs showed that the secretory ducts are arranged between the parenchymal tissues of the leaf. Section of flower buds revealed that anthers had...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 61 شماره
صفحات -
تاریخ انتشار 2010